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Abstract—This paper presents a high precision gesture 
recognition system that leverages the Doppler effect of 
ultrasound to sense in-air hand gestures. The system can 
precisely identify a wider variety of gestures than other systems 
without any modification to consumer laptops. The system 
recognizes quantitatively detailed and complex movements from 
the signals reflected by a moving body. A Hidden Markov Model 
is used to construct a library of independent, discrete gestures. 
The gestures can be mapped to diverse application actions. Our 
method can distinguish among similar gestures with slight 
difference by extracting fewer, more effective features. Our 
proposed system reduces false positives caused by unintended 
motions and is versatile and adaptable to multiple device. We 
implemented a proof-of-concept prototype on a laptop and 
extensively evaluated the system. Our results show that the 
system recognizes ten gestures with an average accuracy of 98% 
and 18 gestures including similar ones with 95% accuracy. The 
flexibility and robustness on multiple devices highlights its ability 
to enable future ubiquitous non-contact gesture-based interaction 
with computing devices.  

I. INTRODUCTION  
Gesture recognition can help realize natural and intuitive Human-Computer Interaction. Gestures are easy to learn and do not require peripheral equipment such as a mouse or keyboard, and therefore has attracted the attention of many researchers given these advantages. In-air gesture recognition is a promising approach applicable in a variety of scenarios, such as Virtual Reality [1], Motion Sensing Game [2], Smart Home [3,4], and Ubiquitous Computing [5]. In such scenarios, hand gestures can be captured with visual images [6], signals from wearable sensors [7], infrared [8], and ultrasound signals [9, 10, 11]. Visual-based systems have fundamental limitations in that they require sufficient light and create privacy concerns due to the use of cameras. The other two approaches also have limitations as wearable sensor-based systems are inconvenient and infrared techniques need high installation and instrumentation. Ultrasonic-based gesture recognition systems  

that only use the speaker and microphone, the most ubiquitous components in device such as laptops and mobile phones have been proposed [9, 10, 11] to help overcome the limitations of existing systems as they promise wider range of applications and angles do not need extra equipment, and are not restricted by light conditions. These ultrasonic systems utilize the Doppler shift reflected by a moving human body to recognize motion and gestures.  
However, the existing ultrasonic-based gesture recognition system have some limitations, they either use processed Doppler shifts directly as features or leverage empirical matching methods based on the primary motion attributes, and thus are currently unable to estimate gestures precisely, especially for similar motions. For example, when a hand approaches a device at any arbitrary angle at roughly the same velocity. The absolute changes in distance of an object to the device are same, making it challenging to distinguish different gestures using existing methods. These challenges restrict the range of gestures and precision of recognition.   
In this paper, we present a high precision gesture recognition system based on quantizing the characteristics of the Doppler Effect. Unlike other systems, our system can distinguish similar gestures precisely, is resilient to changes within the environment, and can operate on consumer laptops without additional sensors. Seven quantitative indicators that are both representative and involve detailed information are extracted from Doppler shifts. Every gesture consists of a successive sequence of features in time. Using Hidden Markov Model (HMM) classification, we achieved an average recognition accuracy of 98% with ten gestures, and an accuracy of 95% with 18 gestures including similar movements in stationary deployments. The main contributions of our work are as follows: 
 We present a high precision gesture classification  technique leveraging a quantitative characterization of the Doppler effect, and demonstrate the effectiveness of selected properties via experiments. 
 We tackle the challenge of distinguishing similar gestures based on the correlation between body parts, which increases the range of gestures identified.  

This work was supported in part by the Innovation Fund of Shanghai 
Aerospace Science and Technology (SAST, 2015014), The Key Technology 
R&D Program of Hubei Provence (2014BAA153), and SKLSE-2015-A-06.
Yifang Men is the corresponding author. 



 
 We describe the adaptation of systems to multiple devices in different environments, and use parameter optimization to reach higher accuracy.  
The rest of the paper is organized as follows. Section II reviews the related work on ultrasonic-based sensing technology. Section III describes the operational theory of our proposed system. Section IV presents the method to quantize the Doppler Effect and classify gestures. Section V evaluates its performance in various experiments. Section VI concludes the paper.  

II. RELATED WORK 
A. Gesture Recognition 

As a promising sensing modality, ultrasound has been widely investigated. The tone with 20 kHz, beyond the range of human ear is available in many commercial devices such as laptops, mobile phones, and smart TVs. Gupta et al. [9] proposed Soundwave, a sound-based gesture sensing technique exploiting the Doppler effect to leverage audio hardware found in commercial laptops. They achieved an accuracy of 94% with five gestures. Yang et al. [11] proposed Dolphin, a technique using the speaker and microphone in smartphone to detect gestures. It was able to identify 24 pre-defined gestures at an accuracy of 94% by combining empirical and machine classification. In [12], Raj et al. employed a single transmitter and multiple receivers to recognize different gestures, and explored several novel applications based on ultrasonic Doppler with custom sensors. All their work has been a great inspiration to us. 
B. Activity Recognition & Motion Detection 

Subsequently, the mounting interest in technologies for healthcare has led researchers to investigate non-contact methods for detecting motion. Watanabe et al. [15] enable activity-aware services with a microphone on the chest and one or more small speakers on the wrists. The sensors detect motion on the basis of the volume of the received sound to determine the distance between the speaker and the microphone using the Doppler effect to estimate the speed of motions. [10] presents various experiments to outline opportunities for activity recognition leveraging ultrasonic techniques and discusses its benefit and limitation. This technology is also used to measure user presence and attention [16]. It is a promising way to realize intelligent environments to monitor the elderly [17]. 
C. Other Technologies 

Recently, more novel research has explored the potential of ultrasonic technology in various scenarios. AirLink [13] allows users to share files between multiple devices with this technique leveraging the Doppler shift caused by a moving hand to identify the direction of hand movement from one device to another. Similarly, DolLink [14] utilizes this technique to enabling impromptu, natural device selection, pairing, and content transfer. Raj et al [12] also developed an application for identifying people based primarily on their gait. 

 
Fig. 1. Frequency-time Doppler profile caused by moving hands. No gesture is performed before second 1. And then the hand moves towards and away from the device alternately.  

In contrast to these systems, we introduce an ultrasonic system that expands the ability to recognize more gesture types. We also propose a parameter selection strategy to realize auto-adaptive parameter setting in different environments and for different devices. In contrast to Gupta et al. [9], we leverage quantification of more detailed movement characteristics, by combining machine learning methods and recognize more gestures with higher accuracy. As compared to Dolphin [11], we extracted 6 properties from Doppler shift as eigenvalues for training the classifier, rather than using 60 values directly of ultrasonic vector data. This low dimensional space is more computationally efficient and discriminative. 
III. THEORY OF OPERATION 

The proposed gesture recognition system works by using a physical principle called Doppler effect, frequency-shift caused by a moving object [18]. The system leverages the speaker (source) of the device to generate a continuous pilot tone, and simultaneously captures it with the microphone (receiver). Since the source and receiver are stationary, the frequency will not change if there is no motion. When the body moves towards the device, it reflects waves, causing a positive shift in frequency. Moving away from the device causes a negative shift in frequency. The shifts sensed by receiver can be measured with the following expression: 
                                 0(1 )vf fc

                                (1) 
where f  and 0f  are respectively perceived frequency at 
microphone and original frequency from speaker, c  is the 
speed of sound in air and v  is the velocity of in-air gesture 
relative to the device. 

Fig. 1 plots the frequency-shifts caused by moving hand. When no gesture is performed, most of the energy is concentrated in the emitted frequency. Shifts occurs when a hand moves towards or away from the device creating the Doppler-effect. The direction of hand movement is one of the most important characteristic attributes in the received signal for gestures recognition. 
IV. PROPOSED METHOD 

This section presents the method we propose for gesture sensing. As depicted in Fig. 2, three main stages are performed covering Doppler Quantization, Gesture Identification, and Action Mapping. 
 



 

 
Fig. 2. The system processing components. 
A. Doppler effect Quantization 

The goal of this stage is to quantize the Doppler effect by extracting features from the raw audio signals. Since the proposed system depends on the speaker to emit a tone and the microphone to capture it, this stage starts with a signal acquisition step and then processes the audio data using Fast Fourier Transform (FFT), followed by a Feature properties quantization step. The details of the different submodules are as follows. 
1) Signal Acquisition: The system requires a continuous 

tone, which can be a pure sine-wave with the highest possible 
frequency played through the device’s speaker. Most laptops 
and phone speaker system are capable of generate audio up to 
22 kHz. We used the pilot tone at 18 kHz because it is 
inaudible to humans but detectable by almost all standard 
microphones. We made the microphone sample at 44.1 kHz to 
meet the conditions of the Nyquist theorem.  Each data frame needed 50 milliseconds for collection purposes. The hand movements in front of a laptop were observed at a velocity up to 3.9 m/sec [9] indicating the duration of a gesture was more than 256 milliseconds. Therefore, when a gesture is performed, at least five frames of raw data were captured. 

2) Fast Fourier Transform: The main effect of human 
hand motions is the frequency-shift occurring in the frequency-
domain. Thus it was necessary to transform the original time-
domain signal to frequency-domain leveraging the Fast Fourier 
Transform (FFT). To start with, we leveraged the Hamming 
window to reduce the amount of spectral leakage, it can be 
described by the following equation. 
 0.54 0.46 2 ,0( ) ( )nw n cos n NN     (2) 
where 1N L  , L is the length of the window. Hence, we 
computed the FFT with 2048-point Hamming window vectors, 
yielding 1024-point magnitude vectors with a spectral width of 
22.05 kHz. The frequency resolution was 21.5 Hz per bin.  

3) Feature Properties: Seven feature properties are 
extracted from frequency-domain vectors A  to quantize the 
Doppler shift. We define the feature primitive as 

1 2{ , ,..., }mP    , m=7, where m is the number of properties, 
and i is the quantitative property based on motion 
characteristics. 

a) 1 is used to measure the amplitude of the emitted 
tone, which is usually the highest amplitude and represents the 
strength of overall signal. 1  is related to the size and 
proximity of the target. If the signal is reflected by human 
body, there will be a larger amplitude than a signal reflected 
only from hands. The amplitude increases when user moves 
closer to the device. It is computed by 1 0( )A f   where A  is 
the shift data processed with fft,  iA x  is the amplitude of 
frequency ix , and 0f  is original frequency from speaker. 

b) 2  represents the energy on the left side of the 
emitted peak, and 3  represents the energy on the opposite 
side. When the frequency occurs a positive shift, 3 will be 
increased, and a negative shift will increase the value of 2  
as: 
 2 3( ), ( )b c

i a i bA i A i      (3) 
where 0a f f   , 0b f , and 0c f f   . 300f Hz   can detect 
movements at a velocity up to 5.7 m/sec, as discussed in 
Section III. 

c) 4 is used to measure the velocity of movement and 
is computed by the bandwidth at amplitude v .Change in this 
property is proportional to the absolute velocity of the target. 
It is given by 4     , where 0arg min f    ,  is subject 
to an energy constraint 0 0( , ), ( )i i vx f f f A x      
and  0 0,f f f    .The right margin 0arg min f    ,  is 
subject to an energy constraint 0 0( , ), ( )i i vx f f f A x       and  0 0,f f f    . 

d) 5 represents the direction of movement in this time 
frame and defined by:  
        5 4( ) ( ),c b

i b j aA i A j if       , 5, 0else          (4) 
where  is the slowest velocity (0.25 m/sec) that can be 
detected. 

e) 6 is used to measure the time duration of a gesture 
indirectly and is the sequence number of the primitive in a 
gesture sample. 

f) 7 is defined to quantize slight changes in gestures 
based on correlations between human body parts. Hand 
movements also put the arm in motion and the arm often 
performs different motions in similar gestures, especially the 
elbow joint. The size of an arm is larger than a hand but the 
speed of an arm movement is slower. Hence, more signal is 
reflected by an arm but the frequency shifts slightly. Therefore, 
the bins near the emitted peak have higher amplitudes. We 
define the bandwidth at amplitude d  (approximately 90% of 
the maximal amplitude) as the value of this property. 

After feature quantization a normalization need to be performed to avoid the uncertainty of ultrasonic intensity.  
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 Fig. 3. Framework of the HMM-based gesture classification. One HMM is 
trained for each gesture and the test motion will be mapped to the gesture 
which has the highest score.  
 where tF  is a feature vector at time t, tP  is feature primitive at 
time t, and m is the number of using properties. 

Finally, we present a parameters selection strategy for the 
threshold v and d . The experiments are performed to explore 
the relevance between the recognition accuracy and parameters. We find there is an optimization to the highest accuracy for both parameters. Hence, the parameters are initialized based on common practices and we search the optimization using the strategy which is similar to binary search algorithm. 
B. Gesture Identification 

1) Segmentation: Knowing when a user is generating a 
gesture is an important question in the normal workings of the 
system. It helps to eliminate casual actions/noises from the 
environment and leads to energy-efficiency. We use the 
properties of feature primitives to judge whether the frequency 
shifts in a frame time. Primitives are converted to a string 
sequence: right shifts to positive signs, left shifts to negative 
signs, and no shifts to zeros. The gesture starts when the 
primitive is not recognized as zero. If four continuous zeros are 
detected it means movements have just completed, and a 
gesture will be quickly extracted. This method can extract 
gestures precisely and is appropriate for real-time scenarios. 
Moreover, the system goes into auto-off mode when no 
gestures are detected for a long time. 

2) HMM-based Gesture Classification: Hidden Markov 
Model (HMM) is a stochastic model which is useful for 
analyzing a sequence of observations [19]. It is widely used in 
speech recognition and vision-based gesture sensing system 
[20].  

In this system, feature primitives in order of time form a 
sequence of vectors 0 1{ , ,..., }nt t tF F F , which is used as  
observations. Where tF  has been proposed in section A. For  
instance, a gesture was captured with 20 time frames and each 
consists of 7 characteristic properties. They form a feature 
vector of total 140 points: 

               
0 1 19

140 1 7 1[ , ,..., ] , ,T T T T
t t t tV F F F V R F R             (6) 

The feature vector V  as observations is used for training 
classifier and recognizing gestures. To decide the number of hidden states, the system iterates through various number of states to select the number that provides highest accuracy.  

The system constructs an HMM for each gesture using the 
training samples. Given a total of N gestures, N HMMs 

1 2{ , ,..., }NHMM HMM HMM are learned from gesture samples. 
Each HMM can be specified using a triplet ( , , )A B   

 
Fig. 4. Component deployment in test environment. 

 
where A is a transition matrix including transition probabilities between the states, B is an emission matrix for the observation symbol probability distributions, and  is the initial state 
probability. After the initialization of the models for each gesture, the feature vector V  extracted from the ultrasonic 
signal as observations is used for training classifier. The system uses the Baum-Welch algorithm to learn and modify parameters until the models converge to an ideal state.  

Given the trained HMMs, we utilize the Forward-Backward algorithm to compute the likelihood of the observation for all the models and the gesture with the highest score will be output. Fig. 3 shows the general procedure in classification. 
C. Action Mapping 

This is a direct step for mapping application actions to gestures pre-defined in the rich library. As an example,  output gestures can act as a game controller. We can make a character walk to the right by a right-swipe gesture while a jump action performed with a tap gesture. Users can also define and train gestures based on own preferences. In addition, the system passes the properties of the gesture to the application for further processing. For instance, the velocity also changes in a time frame and can be used to control the speed of a character’s movement in a real-time game. 
V. EVALUATION 

The first part of the experiments tested how well the method works with similar gestures. Here, we exhaustively interpret these results. In the second part we compared the accuracy of machine and empirical recognition, and discuss their benefits and limitations. In the last part we addressed the flexibility and robustness of the system including the adaption of parameters in different environments and the mistakes when no gesture was performed.  
The experiments were conducted in the conference room of laboratory using desktop PCs with an external USB soundcard and microphone. As shown in Fig. 4, user faces the PC with the audio interface deployed right in front of him. The device is above the user in horizontal direction. The speaker generates a pure sine-wave with 18 kHz and the microphone picks up the signals reflected by the moving body. The PC is used to control the operation of system and respond to the gestures. We also tested several laptops, all of which performed similarly in our performance results. 



 
 

 Fig. 5.  Similar gestures recognition accuracy. Group 1 contains SFF, SFS, 
SSF, DS. Group 2 contains RL, UD, STRL. Group 3 contains LR, DU, STLR. 
Group 4 contains R, U. Group 5 contains L, D. 

TABLE I.  DEFINITION OF GESTURE 
Gesture Description 

  (R) Swipe your hand to right 
  (L) Swipe your hand to left    (RL) Swipe your hand to right, then to left 

   (LR) Swipe your hand to left, then to right 
   (SFF) Two handed Seesaw-Fast-Fast: move both hands 

from center simultaneously in opposite directions at 
the same time, separating fast and uniting fast 

   
  (DS) 

Double-Seesaw: do seesaw action twice with 
arbitrary velocity 

  (STLR) Single-Tap-left-right: move hand to left, then to 
right quick and slightly which likes a tap action. 

 (DTLR) Double-Tap: do STLR gesture twice continuously 
  (U) Move up your hand 
  (D) Move down your hand 
  (UD) Move your hand up, and then down 
  (DU) Move your hand down, and then up 

 
We defined a gesture library containing a variety of gestures and two actions. The gestures varied in moving path, velocity, duration, and arm-based property. 12 gestures were chosen from the library (18 gestures in total) and are shown in Table I. The gesture library also contains seesaw gestures such as Seesaw-Fast-Slow (SFS) and Seesaw-Slow-Fast (SSF) that have different velocities than SFF. Tap gestures include STRL and DTRL and these two gestures are different than STLR and DTLR in direction. Moreover; two actions, walking towards (WT) and walking away(WA) from the device are defined in the library.  

A. Similar Gestures Recognition Performance 
1) Accuracy of Similar gestures: We first evaluated 

similar gestures detection performance by dividing all of the 
gestures into five groups and computed the accuracy in each 
group. One-group gesture can cause similar Doppler shifts 
over time. For example, UD, RL, and STRL all approach the 
device first, and then moves away from it. A user performs 
200 samples of each gesture for a total of 2800 samples. The 
results in Fig. 5 show that overall similar gestures detection 
accuracy averaged over all different groups was 95%. 

 Fig. 6. The accuracy values for five groups containing similar gestures with 
different feature selection. The first three feature selections all lack a property The last selection uses all properties. 
 

 
Fig. 7. A comparison of empirical and machine classification accuracy.  
Although similar gestures are easily confused, they have slight 
variations in duration, velocity, and details. Since, it is more 
convenient for user to swipe from left-to-right (or right-to-left), 
the Up-Downwards gestures are reluctantly performed. Thus, 
shifts caused by the former are energy-abundant at higher 
speed, and therefore, the movement of the arm also plays a 
role in similar gesture recognition.  

2) Selection of Features: Fig. 6 shows the effect of 
selection of different properties as features in recognition 
accuracy. We note that accuracy can be further enhanced by 
combining the properties of duration, direction, and details. 
Usually, duration is a characteristic of a gesture not a 
primitive, but we use the index of a primitive sequence 6  to 
act as a property of a primitive. Fig. 6 illustrates that the 
duration makes all groups more accurate, except group 4 and 
group 5; because the gestures in these two groups have 
extremely similar duration, there was no way to distinguish 
them  by this property. In theory, the direction of movement 
leads to significant changes in the Doppler effect, but this 
property is linearly dependent to left-energy and right-energy 
thus increases the redundancy. Leveraging the details 
improved the recognition accuracy of all groups and shows 
that our method based on body-correlation is reasonable. 
B. Comparison of Classification Methods 

We now compare the accuracy of empirical [9] and machine gesture classification. Since the empirical model method cannot recognize similar gestures, we choose six basic gestures to test. From the Fig. 7, we see the machine  



 
TABLE II.  ACCURACY  IN DIFFERENT ENVIRONMENTS 

Environment Device v  d  Accuracy 
conference room HP desktop PC 28 37 95.6% 

35 49 89.6% 
apartment HP desktop PC 29 37 95.4% 

28 37 94.7% 
conference room ThinkPad laptop 35 49 94.8% 

28 37 91.2% 
apartment ThinkPad laptop 35 47 94.4% 

35 49 94.2% 
 
classification method with an average accuracy of 98.6% is more effective than the empirical model method, whose average accuracy is 94%.  
C. Flexibility and Robustness of the System 

1) Adaption of parameters: We evaluated 18 gestures 
including two actions (walk towards and away from the device) 
in different environments with various devices. From the 
Table II, we see that the system performs well without any 
changes to the algorithms or parameters when it works on the 
same device in different environments. However, if we 
convert the system from laptop to a desktop PCs, the 
parameters are changed to achieve a more accurate result. 
Hence, the system uses the parameter selection strategy to 
optimize parameters in the feature extraction step. In Table II, 
the data in the first column of each item is the result as 
optimized by system. 

2) False-positive rate with no gesture performed: 
Unintented user motion or the motions of people in the area of 
the user may be recognized as a gesture by the system. To 
measure the number of any false gestures over time, we 
conducted an hour-long test with people present and not 
present. In the unmanned environment, the false-positive rate 
was nearly zero. Surrounding noise makes it difficult to reach 
the standard for any gesture. When users sat in front of the PC, 
typing or thinking, they were instructed to act normally. An 
average of 1.5 false gestures occurred per minute, the false 
gestures detected were mainly tap motions, that moved 
towards or away from the  device in turn, without any velocity 
constraints. Swipe gestures can be detected only when 
meeting a set velocity criterion. 

VI. CONCLUSION 
This paper presents a high precision gesture recognition system that uses the ultrasonic Doppler effect to detect human hand motions. It can distinguish a rich set of gestures without any modification of a laptop. We addressed system challenges including similar gestures recognition, feature primitives extraction, adaptive parameter adjustment for different environments, and reduction of false positive rates. 
Extensive evaluation of the proposed system reveals  that similar gestures  in a dramatically expanded gesture library are detected at an accuracy of 95%.  In contrast to other methods, the accuracy  of our proposed approach increases to 98% with eight basic gestures using HMM classification. These results 

show that our system is robust and adaptive to varying environmental conditions, highlighting how it could enable future ubiquitous, non-contact gesture-based human interaction with consumer devices. 
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