<text><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></text>		Supplementary Mate	erials for
Paper ID 594 In this document we provide the following supplementary contents: 9. Octavity of artistic portrait generation: 9. Results of artistic portrait generation: 9. Results of full-body image translation. 10. Comparison with state-of-the-art methods. 11. Iminations: 11. Other and Provide Architecture: 12. Autority and the following supplementary translation follow the StyleGAN2 config-f models and the activative can be found in [9]. For the texture translation network, we provide network structure details table of generator and discriminator follow the StyleGAN2 config-f models and the activative can be found in [9]. For the texture translation network, we provide network structure details table of generator architecture Table 1: Details of generator architecture: Operation Output Size 10. Output Size 10. Conv+LReLU 126 × 256 × 32 10. Conv+LReLU+Conv+LReLU 126 × 256 × 32 10. Conv+LReLU+Conv+LReLU 128 × 128 × 64 <		Supplementally Max	
Paper ID 594 In this document we provide the following supplementary contents: • Details of network architecture. • Results of artistic portrait generation. • Results of full-body image translation. • Comparison with state-of-the-art methods. • Limitations. • Network architecture • Network architecture • To the content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details To the content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details To the content calibration network the generator and discriminator follow the StyleGAN2 config-f models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details To the content calibration network the generator and discriminator follow the StyleGAN2 config-f models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details Table 1. Table 1: Details of generator architecture.	"DC	F-Net: Domain-Calibrated Translat	tion for Portrait Stylization"
Paper ID 594 In this document we provide the following supplementary contents: 9. Details of network architecture: 10. Training details of content calibration network. 10. Results of artistic portrait generation. 10. Comparison with state-of-the-art methods. 10. Timitations: 10. Network architecture 10. Network architecture 10. Network architecture can be found in [9]. For the texture translation network, we provide network structure details 1. 10. The content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details 1. Table 1. Details of generator architecture. 10. Notyput Size 10. Notyput Size 11. Torinin 10. Notyput Size 12. Notyput Size 13. Conv+LReLU 256 × 256 × 32 13. Conv+LReLU+Conv+LReLU 128 × 128 × 64 13. Conv+LReLU+Conv+LReLU 64 × 64 × 128 13. Residual Block 64 × 64 × 128			
In this document we provide the following supplementary contents: 9. Details of network architecture. 9. Results of artistic portrait generation. 10. Results of full-body image translation. 10. Comparison with state-of-the-art methods. 11. Limitations. 11. Network architecture 12. Network architecture and be found in [9]. For the texture translation network, we provide network structure details 13. Network architecture can be found in [9]. For the texture translation network, we provide network structure details 14. Totals of generator architecture. 15. Details of generator architecture. 15. Table 1: Details of generator architecture. 16. Tonv+LReLU+Conv+LReLU 256 × 256 × 32 16. Conv+LReLU+Conv+LReLU 128 × 128 × 64 17. Conv+LReLU+Conv+LReLU 128 × 128 × 64 18. Conv+LReLU+Conv+LReLU 128 × 128 × 64 18. Conv+LReLU+Conv+LReLU 128 × 128 × 64 18. Conv+LReLU+Conv+LReLU 128 × 128 × 64 × 64 × 128 18. Residual Block		Paper ID 594	
In this document we provide the following supplementary contents: Image: the set of the se			
	In this documer	t we provide the following supplementary contents:	
 Details of network architecture. Training details of content calibration network. Results of artistic portrait generation. Comparison with state-of-the-art methods. Limitations. Network architecture To the content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and I detailed architecture can be found in [9]. For the texture translation network, we provide network structure details Table 1. Table 1: Details of generator architecture. <u>Operation Output Size</u> input 256 × 256 × 3 Conv+LReLU 256 × 256 × 32 Conv+LReLU+Conv+LReLU 128 × 128 × 64 Conv+LReLU+Conv+LReLU 64 × 64 × 128 Residual Block 64 × 64 × 128 Residual Block 64 × 64 × 128 Conv+LReLU+Conv transpose+LReLU 128 × 128 × 64 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU 256 × 256 × 32 Conv+LReLU Conv+LReLU 256 × 256 × 32 Conv+LReLU 256 × 256 × 32 Conv+LReLU Conv+LReLU 256 × 256 × 32 Conv+LReLU Conv+LReLU Conv+LReLU Conv+LReLU Conv+LReLU Conv+LReLU Conv+LReLU Conv+LReLU Co	in this document	it we provide the following supplementary contents:	
 Training details of content calibration network. Results of artistic portrait generation. Results of full-body image translation. Comparison with state-of-the-art methods. Limitations. 1. Network architecture Tor the content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and the dataled architecture can be found in [9]. For the texture translation network, we provide network structure details Table 1. Table 1: Details of generator architecture. More and the convert ReLU Operation Output Size Conv+LReLU+Conv+LReLU Conv+LReLU+Conv+LReLU Residual Block 64 × 64 × 128 Conv+LReLU+Conv transpose+LReLU 128 × 128 × 64 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 33 	• Details	of network architecture.	
 Results of artistic portrait generation. Results of full-body image translation. Comparison with state-of-the-art methods. Limitations. Network architecture To the content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details Table 1. Table 1: Details of generator architecture. Moretain Operation Output Size input 256 × 256 × 32 Conv+LReLU 256 × 256 × 32 Conv+LReLU 128 × 128 × 64 Conv+LReLU+Conv+LReLU 128 × 128 × 64 Conv+LReLU+Conv+LReLU 64 × 64 × 128 Residual Block 64 × 64 × 128 Conv+LReLU+Conv transpose+LReLU 128 × 128 × 64 Conv+LReLU+Conv transpose+LReLU 128 × 128 × 64 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 33 Conv+LReLU 256 × 256 × 33 Co	• Trainin	g details of content calibration network.	
 Results of full-body image translation. Comparison with state-of-the-art methods. Limitations. Network architecture For the content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and tl detailed architecture can be found in [9]. For the texture translation network, we provide network structure details Table 1. Table 1: Details of generator architecture. More and the texture of the content calibration network tructure details fable 1. Table 1: Details of generator architecture. Operation Output Size input 256 × 256 × 32 Conv+LReLU Conv+LReLU Conv+LReLU Conv+LReLU Conv+LReLU Residual Block 64 × 64 × 128 Conv+LReLU+Conv transpose+LReLU 128 × 128 × 64 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU+Conv transpose+LReLU 	Results	of artistic portrait generation.	
 Results of numeroody image transmitton. Comparison with state-of-the-art methods. Limitations. Network architecture For the content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details Table 1. Table 1: Details of generator architecture. ^{Operation} Output Size ^{input} 256 × 256 × 32 ^{Conv+LReLU} 256 × 256 × 32 ^{Conv+LReLU+Conv+LReLU} 128 × 128 × 64 ^{Conv+LReLU+Conv+LReLU} 64 × 64 × 128 ^{Residual Block} 64 × 64 × 1	Results	of full-body image translation	
 Comparison with state-or-ine-art methods. Limitations. Network architecture For the content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details Table 1. Table 1: Details of generator architecture. ^{Operation} Output Size ^{input} 256 × 256 × 32 ^{Conv+L}ReLU Conv+LReLU+Conv+LReLU Residual Block 64 × 64 × 128 Residual Block Conv+LReLU+Conv transpose+LReLU 128 × 128 × 64 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU+Conv transpose+LReLU 	• Commo		
 Limitations. Network architecture For the content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details Table 1. Table 1: Details of generator architecture. Operation Output Size input 256 × 256 × 3 Conv+LReLU 256 × 256 × 32 Conv+LReLU+Conv+LReLU 128 × 128 × 64 Conv+LReLU+Conv+LReLU 64 × 64 × 128 Residual Block 64 × 64 × 128 Conv+LReLU+Conv transpose+LReLU 128 × 128 × 64 Conv+LReLU+Conv transpose+LReLU 128 × 128 × 64 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU 256 × 256 × 32 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU Conv+LReLU Conv+LReLU Conv+LReLU	• Compa	rison with state-of-the-art methods.	
1. Network architecture For the content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details. Table 1: Table 1: Details of generator architecture. Image: Conv+LReLU Output Size Image: Conv+LReLU Conv+LReLU Conv+LReLU+Conv+LReLU 128 × 128 × 64 Conv+LReLU+Conv+LReLU 64 × 64 × 128 Residual Block 64 × 64 × 128 Residual Block 64 × 64 × 128 Residual Block 64 × 64 × 128 Conv+LReLU+Conv transpose+LReLU 128 × 128 × 64 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU+Conv transpose+LReLU 256 × 256 × 32 Conv+LReLU 256 × 256 × 32	• Limitat	ions.	
I. Network architectureFor the content calibration network, the generator and discriminator follow the StyleGAN2 config-f models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details Table 1:Table 1:Details of generator architecture.Image: Structure details of generator architecture. <t< td=""><td>1</td><td></td><td></td></t<>	1		
For the content calibration network, the generator and discriminator follow the StyleGAN2 config-1 models and the detailed architecture can be found in [9]. For the texture translation network, we provide network structure details Table 1. Table 1: Details of generator architecture.	I. Network arc		
Table 1.Table 1: Details of generator architecture. <td< td=""><td>detailed archite</td><td>cture can be found in [9]. For the texture translation</td><td>network, we provide network structure deta</td></td<>	detailed archite	cture can be found in [9]. For the texture translation	network, we provide network structure deta
OperationOutput Sizeinput256 × 256 × 3Conv+LReLU256 × 256 × 32Conv+LReLU+Conv+LReLU128 × 128 × 64Conv+LReLU+Conv+LReLU64 × 64 × 128Residual Block64 × 64 × 128Conv+LReLU+Conv transpose+LReLU128 × 128 × 64Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU256 × 256 × 32Conv+LReLU256 × 256 × 32	Table 1.		
Indic In Details of generator areaOperationOutput Sizeinput $256 \times 256 \times 3$ Conv+LReLU $256 \times 256 \times 32$ Conv+LReLU+Conv+LReLU $128 \times 128 \times 64$ Conv+LReLU+Conv+LReLU $64 \times 64 \times 128$ Residual Block $64 \times 64 \times 128$ Conv+LReLU+Conv transpose+LReLU $128 \times 128 \times 64$ Conv+LReLU+Conv transpose+LReLU $256 \times 256 \times 32$ Conv+LReLU+Conv transpose+LReLU $256 \times 256 \times 32$ Conv+LReLU+Conv transpose+LReLU $256 \times 256 \times 32$ Conv+LReLU $256 \times 256 \times 32$	Table 1. Detail	s of generator architecture	
OperationOutput Sizeinput256 × 256 × 3Conv+LReLU256 × 256 × 32Conv+LReLU+Conv+LReLU128 × 128 × 64Conv+LReLU+Conv+LReLU64 × 64 × 128Residual Block64 × 64 × 128Conv+LReLU+Conv transpose+LReLU128 × 128 × 64Conv+LReLU+Conv transpose+LReLU128 × 128 × 64Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU256 × 256 × 32Conv+LReLU256 × 256 × 32	Tuble 1. Detail		
input256 × 256 × 3Conv+LReLU256 × 256 × 32Conv+LReLU+Conv+LReLU128 × 128 × 64Conv+LReLU+Conv+LReLU64 × 64 × 128Residual Block64 × 64 × 128Conv+LReLU+Conv transpose+LReLU128 × 128 × 64Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU256 × 256 × 32		Operation	Output Size
Image: Convertine of the convertine of the convertine of the convert of the conv		input	$256 \times 256 \times 3$
Conv+LReLU256 × 256 × 32Conv+LReLU+Conv+LReLU128 × 128 × 64Conv+LReLU+Conv+LReLU64 × 64 × 128Residual Block64 × 64 × 128Conv+LReLU+Conv transpose+LReLU128 × 128 × 64Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU+Conv transpose+LReLU256 × 256 × 32			
Conv+LReLU+Conv+LReLU $128 \times 128 \times 64$ Conv+LReLU+Conv+LReLU $64 \times 64 \times 128$ Residual Block $64 \times 64 \times 128$ Conv+LReLU+Conv transpose+LReLU $128 \times 128 \times 64$ Conv+LReLU+Conv transpose+LReLU $256 \times 256 \times 32$ Conv+LReLU $256 \times 256 \times 3$		Conv+LReLU	$256 \times 256 \times 32$
Conv+LReLU+Conv+LReLU $64 \times 64 \times 128$ Residual Block $64 \times 64 \times 128$ Conv+LReLU+Conv transpose+LReLU $128 \times 128 \times 64$ Conv+LReLU+Conv transpose+LReLU $256 \times 256 \times 32$ Conv+LReLU $256 \times 256 \times 3$		Conv+LReLU+Conv+LReLU	$128 \times 128 \times 64$
Residual Block $64 \times 64 \times 128$ Conv+LReLU+Conv transpose+LReLU $128 \times 128 \times 64$ Conv+LReLU+Conv transpose+LReLU $256 \times 256 \times 32$ Conv+LReLU $256 \times 256 \times 32$ Conv+LReLU $256 \times 256 \times 32$		Conv+LReLU+Conv+LReLU	$64 \times 64 \times 128$
Residual Block $64 \times 64 \times 128$ Residual Block $64 \times 64 \times 128$ Residual Block $64 \times 64 \times 128$ Conv+LReLU+Conv transpose+LReLU $128 \times 128 \times 64$ Conv+LReLU+Conv transpose+LReLU $256 \times 256 \times 32$ Conv+LReLU $256 \times 256 \times 3$		Residual Block	$64 \times 64 \times 128$
Residual Block64 × 64 × 128Residual Block64 × 64 × 128Conv+LReLU+Conv transpose+LReLU128 × 128 × 64Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU256 × 256 × 3		Residual Block	$64 \times 64 \times 128$
Residual Block $64 \times 64 \times 128$ Residual Block $64 \times 64 \times 128$ Conv+LReLU+Conv transpose+LReLU $128 \times 128 \times 64$ Conv+LReLU+Conv transpose+LReLU $256 \times 256 \times 32$ Conv+LReLU $256 \times 256 \times 3$			
Residual Block $64 \times 64 \times 128$ Conv+LReLU+Conv transpose+LReLU $128 \times 128 \times 64$ Conv+LReLU+Conv transpose+LReLU $256 \times 256 \times 32$ Conv+LReLU $256 \times 256 \times 3$		Residual Block	$64 \times 64 \times 128$
Conv+LReLU+Conv transpose+LReLU128 × 128 × 64Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU256 × 256 × 3		Residual Block	$64 \times 64 \times 128$
Conv+LKeLU+Conv transpose+LKeLU128 × 128 × 64Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU256 × 256 × 3			120 × 120 × 64
Conv+LReLU+Conv transpose+LReLU256 × 256 × 32Conv+LReLU256 × 256 × 3		Conv+LKeLU+Conv transpose+LKeLU	$128 \times 128 \times 64$
Conv+LReLU 256 × 256 × 3		Conv+LReLU+Conv transpose+LReLU	$256 \times 256 \times 32$
		Conv+LReLU	256 × 256 × 3

51

52 53

54

55

57

58

59

60

61

62

63

64

65

66

67

68

69

72

73

78

79

80

81

82

83

84

85

86

89

90

91

92

93

94

95

96

97

98

Table 2: Details of discriminator architecture.

Operation	Output Size
input	256 × 256 × 3
DeConv+SN+LReLU	$128 \times 128 \times 32$
Conv+SN+LReLU	$128 \times 128 \times 32$
DeConv+SN+LReLU	$64 \times 64 \times 64$
Conv+SN+LReLU	$64 \times 64 \times 64$
DeConv+SN+LReLU	32 × 32 × 128
Conv+SN+LReLU	32 × 32 × 128
Conv+SN	$32 \times 32 \times 1$

Table 3: Details of regressor architecture.

Operation	Output Size
input	256 × 256 × 3
DeConv+SN+LReLU	128 × 128 × 32
Conv+SN+LReLU	128 × 128 × 32
DeConv+SN+LReLU	64 × 64 × 64
Conv+SN+LReLU	64 × 64 × 64
DeConv+SN+LReLU	32 × 32 × 128
Conv+SN+LReLU	$32 \times 32 \times 128$
Mean pooling	128
Fully connected layer	512
Fully connected layer	3

41 42 43

01

02

03 04

12

13

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

- **45**
- **46**
- **47**
- **48**
- **49**

SIGGRAPH	SIGGRAPH 2022 Submission 594.	CONFIDENTIAL REVIEW COPY. DO NOT	SIGGRAPH
#594	DISTRIBUTE.		#594

2. Training details of content calibration network.

Given a style dataset contains approximate 100 images for a similar style. We start from the pretrained StyleGAN2 model G_s trained on real faces (e.g., FFHQ dataset), and use a copy of G_s as our initialization model G_t . To adapt G_t generating images in the target domain, we fine-tune G_t with full loss function consisting of the original adversarial loss and an identity loss:

$$\mathcal{L}_{ccn} = \mathcal{L}_{adv} + \lambda_{id} \mathcal{L}_{id},$$

58 59

61

63 64

88 89

where λ_{id} denotes the weight of the identity loss. \mathcal{L}_{id} is formulated as:

$$\mathcal{L}_{id} = 1 - \cos(z_{id}(\hat{x}_t), z_{id}(\hat{x}_s)),$$

where $cos(\cdot, \cdot)$ represents the cosine similarity of two vectors and the id feature z_{id} is extracted from existing face recognition model [11]. \hat{x}_t and \hat{x}_s are outputs of fixed generator G_s and learnable generator G_t , respectively. The define of \mathcal{L}_{adv} and more training parameters are the same with [9]. We set $\lambda_{id}=0.1$ and train G_t for around 1000 iterations.

32

39 40

43

44

45

46

47

48

49

BIO Anime Clipart

Figure 1: Results of synthesized portraits in various styles. Source image credits: CelebA [2].

52

53

54

58

61

62

65

66

67

72

73

74

78

79

81

82

83

84

85

86

87

94

SIGGRAPH #594

94

95

96

97

98

99

Figure 2: Results of synthesized portraits in various styles. Source image credits: CelebA [2].

48

4. Results of full-body image translation.

(a) 3D Cartoon

02

03

04

05

06

07

08

09

18

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

36

37

38

39

42

43

46

48

49

Figure 3: Results of stylized full images in 3D cartoon style. The source image in the left and the stylized result in the right. Source images: ©Unsplash[12], Google [1].

57 58

(b) Hand-drawn

Figure 4: Results of stylized full images in hand-drawn style. The source image in the left and the stylized result in the right. Source images: ©Unsplash[12], Google [1].

SIGGRAPH #594

96

98

Figure 5: Results of stylized full images in anime style. The source image in the left and the stylized result in the right. Source images: ©Google [1].

48

5. Comparison with state-of-the-art methods. We provide more comparison results with four SOTA methods: CycleGAN [3], U-GAT-IT [4], Toonify [5], and PSP [6]. (e) PSP (a) Source (b) CycleGAN (c) U-GAT-IT (d) Toonify (f) Ours

Figure 6: Qualitative comparison with state-of-the-art methods. Source images: ©CelebA [2].

52

59

61

23

24

27

28

29

31

32

34

SIGGRAPH #594

SIGGRAPH #594

SIGGRAPHSIGGRAPH 2022 Submission 594. CONFIDENTIAL REVIEW COPY. DO NOTSIGGRAPH#594DISTRIBUTE.#594

Due to the nature of unconditional generative model, Few-shot-Ada performed worse for arbitrary photo transfer. So, we also evaluate this method in noise manner: random noises z are randomly sampled in its latent space, and we input z into both the source generator and the adapted style generator to produce photo images I_p and stylized results I_r , respectively. These aligned pairs (I_p, I_r) indicate the best capability of this adapted generation model for the transfer task (no inversion error is introduced). We use the synthesized photo image I_p as the input of our network to produce comparison results in Figure 9. As we can see, our method still outperforms this method with more content details preserved.

63 64

87 88

92

Figure 9: Comparison with Few-shot-Ada [8] in noise manner. Source images: ©Agile-GAN [7].

SIGGRAPH	SIGGRAPH 2022 Submission 594.	CONFIDENTIAL REVIEW COPY. DO NOT	SIGGRAPH
#594	DISTRIBUTE.		#594

6. Limitations.

15 16

21

23

30

35

Because of the inherent characteristics of some styles (i.e., hand-drawn and anime), our synthesized results might not be natural enough when there exist server lighting shadows in human faces, as shown in Figure 10. But some styles (i.e., 3D cartoon) can still be well handled owing to its specific nature.

 (a) Source
 (b) 3D cartoon

Figure 10: Failure cases due to the disturbed illumination.

Reference

- [1] Google. [EB/OL]. https://www.google.com/.
- [2] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive facial image manipulation. In IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR), 2020.
- [3] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A 1062 Efros. Unpaired image-to-image translation using cycle- 1063 consistent adversarial networks. In Proceedings of the IEEE 1064 international conference on computer vision, pages 2223– 1065 2232, 2017.
- [4] Junho Kim, Minjae Kim, Hyeonwoo Kang, and Kwang Hee Lee. U-gat-it: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. In International Conference on Learning Representations, 2020.
- [5] Justin NM Pinkney and Doron Adler. Resolution dependent gan interpolation for controllable image synthesis between domains. arXiv preprint arXiv:2010.05334, 2020.
- [6] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding in style: a stylegan encoder for image-to-image translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2287–2296, 2021.
- [7] Guoxian Song, Linjie Luo, Jing Liu, Wan-Chun Ma, Chunpong Lai, Chuanxia Zheng, and Tat-Jen Cham. Agilegan: stylizing portraits by inversion-consistent transfer learning. ACM Transactions on Graphics (TOG), 40(4):1–13, 2021.
- [8] Tero Karras, Samuli Laine, and Timo Aila. A style-based 947 generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4401–4410, 2019.
- [9] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8110–8119, 2020
- [10] Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A Efros, Yong Jae Lee, Eli Shechtman, and Richard Zhang. 2021. Few-shot Image Generation via Cross-domain Correspondence. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10743–10752.
- [11] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. 2019. Arcface: Addi- tive angular margin loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4690–4699.
- [12] Unsplash. [EB/OL]. https://unsplash.com/.
- **44 45**

- **48**
- **49**